An experimentally guided umbrella sampling protocol for biomolecules.

نویسندگان

  • Maria Mills
  • Ioan Andricioaei
چکیده

We present a simple method for utilizing experimental data to improve the efficiency of numerical calculations of free energy profiles from molecular dynamics simulations. The method involves umbrella sampling simulations with restraining potentials based on a known approximate estimate of the free energy profile derived solely from experimental data. The use of the experimental data results in optimal restraining potentials, guides the simulation along relevant pathways, and decreases overall computational time. In demonstration of the method, two systems are showcased. First, guided, unguided (regular) umbrella sampling simulations and exhaustive sampling simulations are compared to each other in the calculation of the free energy profile for the distance between the ends of a pentapeptide. The guided simulation use restraints based on a simulated "experimental" potential of mean force of the end-to-end distance that would be measured by fluorescence resonance energy transfer (obtained from exhaustive sampling). Statistical analysis shows a dramatic improvement in efficiency for a 5 window guided umbrella sampling over 5 and 17 window unguided umbrella sampling simulations. Moreover, the form of the potential of mean force for the guided simulations evolves, as one approaches convergence, along the same milestones as the extensive simulations, but exponentially faster. Second, the method is further validated by replicating the forced unfolding pathway of the titin I27 domain using guiding umbrella sampling potentials determined from actual single molecule pulling data. Comparison with unguided umbrella sampling reveals that the use of guided sampling encourages unfolding simulations to converge faster to a forced unfolding pathway that agrees with previous results and produces a more accurate potential of mean force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Energy Calculation from Steered Molecular Dynamics Simulations Using Jarzynski’s Equality

Jarzynski’s equality is applied to free energy calculations from steered molecular dynamics simulations of biomolecules. The helix-coil transition of deca-alanine in vacuum is used as an example. With about ten trajectories sampled, the second order cumulant expansion, among the various averaging schemes examined, yields the most accurate estimates. We compare umbrella sampling and the present ...

متن کامل

Efficient estimation of rare-event kinetics

The efficient calculation of rare-event kinetics in complex dynamical systems, such as the rate and pathways of ligand dissociation from a protein, is a generally unsolved problem. Markov state models can systematically integrate ensembles of short simulations and thus effectively parallelize the computational effort, but the rare events of interest still need to be spontaneously sampled in the...

متن کامل

Biomolecular free energy profiles by a shooting/umbrella sampling protocol, "BOLAS".

We develop an efficient technique for computing free energies corresponding to conformational transitions in complex systems by combining a Monte Carlo ensemble of trajectories generated by the shooting algorithm with umbrella sampling. Motivated by the transition path sampling method, our scheme "BOLAS" (named after a cowboy's lasso) preserves microscopic reversibility and leads to the correct...

متن کامل

CTMS Fellowship Report

In the studies of force-induced conformational transitions of biomolecules, the large time-scale difference from experiments presents the challenge of obtaining convergent sampling for molecular dynamics simulations. To circumvent this fundamental problem, an approach combining the replica-exchange method and umbrella sampling (REM-US) is developed to simulate mechanical stretching of polysacch...

متن کامل

Focused conformational sampling in proteins.

A detailed understanding of the conformational dynamics of biological molecules is difficult to obtain by experimental techniques due to resolution limitations in both time and space. Computer simulations avoid these in theory but are often too short to sample rare events reliably. Here we show that the progress index-guided sampling (PIGS) protocol can be used to enhance the sampling of rare e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 129 11  شماره 

صفحات  -

تاریخ انتشار 2008